skip to main content


Search for: All records

Creators/Authors contains: "Vinatzer, Boris A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional taxonomy provides a hierarchical organization of bacte- ria and archaea across taxonomic ranks from kingdom to subspecies. More recently, bacterial taxonomy has been more robustly quanti- fied using comparisons of sequenced genomes, as in the Genome Taxonomy Database (GTDB), resolving down to genera and species. Such taxonomies have proven useful in many contexts, yet lack the flexibility and resolution of a more fine-grained approach. We apply our Life Identification Number (LIN) approach as a com- mon, quantitative framework to tie existing (and future) bacterial taxonomies together, increase the resolution of genome-based dis- crimination of taxa, and extend taxonomic identification below the species level in a principled way. We utilize our existing concept of a LINgroup as an organizational concept for microorganisms that are closely related by overall genomic similarity, to help resolve some of the confusions and unforeseen negative effects of nomen- clature changes of microbes due to genome-based reclassification. Our results obtained from experimentation demonstrate the value of LINs and LINgroups in mapping between taxonomies, translat- ing between different nomenclatures, and integrating them into a single taxonomic framework. 
    more » « less
  2. Fusarium avenaceum is a filamentous fungus commonly associated with plants and soil. It is a causal agent of Fusarium head blight (FHB) on maize and small-grain cereals and blights on other plant species, and is one of the very few fungal species known to have ice nucleation activity (i.e., it catalyzes ice formation). Here, we report the draft genome of the ice-nucleation-active F. avenaceum strain F156N33 isolated from the atmosphere above Virginia. The genome assembly is 41,175,306 bp long, consists of 214 contigs, and is predicted to encode 11,233 proteins, which were annotated using RNA-sequencing data obtained from the same strain. 
    more » « less
  3. Genomics has put prokaryotic rank-based taxonomy on a solid phylogenetic foundation. However, most taxonomic ranks were set long before the advent of DNA sequencing and genomics. In this concept paper, we thus ask the following question: should prokaryotic classification schemes besides the current phylum-to-species ranks be explored, developed, and incorporated into scientific discourse? Could such alternative schemes provide better solutions to the basic need of science and society for which taxonomy was developed, namely, precise and meaningful identification? A neutral genome-similarity based framework is then described that could allow alternative classification schemes to be explored, compared, and translated into each other without having to choose only one as the gold standard. Classification schemes could thus continue to evolve and be selected according to their benefits and based on how well they fulfill the need for prokaryotic identification. 
    more » « less
  4. Bruno, Vincent (Ed.)
    ABSTRACT Mortierella alpina is a filamentous fungus commonly associated with soil and is one of very few fungal species known to include strains with ice nucleation activity. Here, we report the draft genome sequence of the ice nucleation-active M. alpina strain LL118, isolated from aspen leaf litter collected in Alberta, Canada. 
    more » « less
  5. Plant microbiota play essential roles in plant health and crop productivity. Comparisons of community composition have suggested seed, soil, and the atmosphere as reservoirs of phyllosphere microbiota. After finding that leaves of tomato (Solanum lycopersicum) plants exposed to rain carried a higher microbial population size than leaves of tomato plants not exposed to rain, we experimentally tested the hypothesis that rain is a thus-far-neglected reservoir of phyllosphere microbiota. Therefore, rain microbiota were compared with phyllosphere microbiota of tomato plants either treated with concentrated rain microbiota, filter-sterilized rain, or sterile water. Based on 16S ribosomal RNA amplicon sequencing, 104 operational taxonomic units (OTUs) significantly increased in relative abundance after inoculation with concentrated rain microbiota but no OTU significantly increased after treatment with either sterile water or filter-sterilized rain. Some of the genera to which these 104 OTUs belonged were also found at higher relative abundance on tomato plants exposed to rain outdoors than on tomato plants grown protected from rain in a commercial greenhouse. Taken together, these results point to precipitation as a reservoir of phyllosphere microbiota and show the potential of controlled experiments to investigate the role of different reservoirs in the assembly of phyllosphere microbiota. 
    more » « less
  6. Abstract

    Earth’s radiation budget and frequency and intensity of precipitation are influenced by aerosols with ice nucleation activity (INA), i.e., particles that catalyze the formation of ice. Some bacteria, fungi, and pollen are among the most efficient ice nucleators but the molecular basis of INA is poorly understood in most of them. Lysinibacillus parviboronicapiens (Lp) was previously identified as the first Gram-positive bacterium with INA. INA of Lp is associated with a secreted, nanometer-sized, non-proteinaceous macromolecule or particle. Here a combination of comparative genomics, transcriptomics, and a mutant screen showed that INA in Lp depends on a type I iterative polyketide synthase and a non-ribosomal peptide synthetase (PKS-NRPS). Differential filtration in combination with gradient ultracentrifugation revealed that the product of the PKS-NRPS is associated with secreted particles of a density typical of extracellular vesicles and electron microscopy showed that these particles consist in “pearl chain”-like structures not resembling any other known bacterial structures. These findings expand our knowledge of biological INA, may be a model for INA in other organisms for which the molecular basis of INA is unknown, and present another step towards unraveling the role of microbes in atmospheric processes.

     
    more » « less
  7. Abstract. Decaying vegetation was determined to be a potentially important source ofatmospheric ice nucleation particles (INPs) in the early 1970s. The bacteriumPseudomonas syringae was the first microorganism with ice nucleationactivity (INA) isolated from decaying leaf litter in 1974. However, the icenucleation characteristics of P. syringae are not compatible withthe characteristics of leaf litter-derived INPs since the latter were foundto be sub-micron in size, while INA of P. syringae depends on muchlarger intact bacterial cells. Here we determined the cumulative icenucleation spectrum and microbial community composition of the historic leaflitter sample 70-S-14 collected in 1970 that conserved INA for 48 years. Themajority of the leaf litter-derived INPs were confirmed to be sub-micron insize and to be sensitive to boiling. Culture-independent microbial communityanalysis only identified Pseudomonas as potential INA.Culture-dependent analysis identified one P. syringae isolate, twoisolates of the bacterial species Pantoea ananatis, and one fungalisolate of Mortierella alpina as having INA among 1170 bacterialcolonies and 277 fungal isolates, respectively. Both Pa. ananatisand M. alpina are organisms that produce heat-sensitive sub-micronINPs. They are thus both likely sources of the INPs present in sample 70-S-14and may represent important terrestrial sources of atmospheric INPs, aconclusion that is in line with other recent results obtained in regard toINPs from soil, precipitation, and the atmosphere. 
    more » « less